Inability to catabolize galactose leads to increased ability to compete for nodule occupancy in Sinorhizobium meliloti.

نویسندگان

  • Barney A Geddes
  • Ivan J Oresnik
چکیده

A mutant unable to utilize galactose was isolated in Sinorhizobium meliloti strain Rm1021. The mutation was found to be in a gene annotated dgoK1, a putative 2-keto-3-deoxygalactonokinase. The genetic region was isolated on a complementing cosmid and subsequently characterized. Based on genetic and bioinformatic evidence, the locus encodes all five enzymes (galD, dgoK, dgoA, SMc00883, and ilvD1) involved in the De Ley-Doudoroff pathway for galactose catabolism. Although all five genes are present, genetic analysis suggests that the galactonase (SMc00883) and the dehydratase (ilvD1) are dispensable with respect to the ability to catabolize galactose. In addition, we show that the transport of galactose is partially facilitated by the arabinose transporter (AraABC) and that both glucose and galactose compete with arabinose for transport. Quantitative reverse transcription-PCR (qRT-PCR) data show that in a dgoK background, the galactose locus is constitutively expressed, and the induction of the ara locus seems to be enhanced. Assays of competition for nodule occupancy show that the inability to catabolize galactose is correlated with an increased ability to compete for nodule occupancy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction and environmental release of a Sinorhizobium meliloti strain genetically modified to be more competitive for alfalfa nodulation.

Highly efficient nitrogen-fixing strains selected in the laboratory often fail to increase legume production in agricultural soils containing indigenous rhizobial populations because they cannot compete against these populations for nodule formation. We have previously demonstrated, with a Sinorhizobium meliloti PutA- mutant strain, that proline dehydrogenase activity is required for colonizati...

متن کامل

Isolation of salt-sensitive mutants of Sinorhizobium meliloti strain Rm1021.

The determinants necessary for adaptation to high NaCl concentrations and competition for nodule occupancy in Sinorhizobium meliloti were investigated genetically. Mutations in fabG as well as smc02909 (transmembrane transglycosylase), trigger factor (tig) and smc00717 (probably ftsE) gave rise to strains that were unable to tolerate high salt and were uncompetitive for nodule occupancy relativ...

متن کامل

Isolation of carbon- and nitrogen-deprivation-induced loci of Sinorhizobium meliloti 1021 by Tn5-luxAB mutagenesis.

Soil bacteria, such as Sinorhizobium meliloti, are subject to variation in environmental conditions, including carbon- and nitrogen-deprivation. The ability of bacteria to sense changes in their environment and respond accordingly is of vital importance to their survival and persistence in the soil and rhizosphere. A derivative of Tn5 which creates transcriptional fusions to the promoterless lu...

متن کامل

Inositol catabolism, a key pathway in sinorhizobium meliloti for competitive host nodulation.

The nitrogen-fixing symbiont of alfalfa, Sinorhizobium meliloti, is able to use myo-inositol as the sole carbon source. Putative inositol catabolism genes (iolA and iolRCDEB) have been identified in the S. meliloti genome based on their similarities with the Bacillus subtilis iol genes. In this study, functional mutational analysis revealed that the iolA and iolCDEB genes are required for growt...

متن کامل

اثرات آلودگی خاک به کادمیوم بر توان گره‎‎‎‎‎‎‎زایی و تثبیت نیتروژن سویه‎های بومیسینوریزوبیوم ملیلوتی (Sinorhizobium meliloti)

Heavy metals have deleterious the effects on nodulation and N2 fixation of Rhizobium- Legume symbiosis, due to their inhibitory effects on the growth and activity of both symbionts. This research has been undertaken to evaluate the effect of Cd tolerance of native rhizobial strains on diminution of the Cd detrimental effects on Sinorhizobium meliloti-alfalfa symbiosis. For this purpose, a green...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 194 18  شماره 

صفحات  -

تاریخ انتشار 2012